So it's about boundary and precision.
Examples below are results derived in Matlab R2007b (64bit) on Win7 x64 on Core i5 2500.
Just a list of examples; no summary or interpretation as of now.
**
>> help eps
will explain most of the following results
**
Large number limit
number:
>> realmaxans =
1.7977e+308
>> realmax+9.97e+291
ans =
1.7977e+308
>> realmax+9.98e+291
ans =
Inf
exp:
>> exp(709)ans =
8.2184e+307
>> exp(710)
ans =
Inf
log:
>> log(realmax+9.97e+291)ans =
709.7827
>> log(realmax+9.98e+291)
ans =
Inf
Small number limit
number:
>> realminans =
2.2251e-308
>> isequal(0,realmin)
ans =
0
>> isequal(0,0+realmin)
ans =
0
>> 1+realmin
ans =
1
>> isequal(1,1+realmin)
ans =
1
>> isequal(1,1+realmin*4.98e+291)
ans =
1
>> isequal(1,1+realmin*4.99e+291)
ans =
0
>> realmin*4.99e+291
ans =
1.1103e-016
>> eps
ans =
2.2204e-016
>> isequal(2,2+realmin*9.97e+291)
ans =
1
>> isequal(2,2+realmin*9.98e+291)
ans =
0
>> isequal(100,100+realmin*3.1e+293)
ans =
1
>> isequal(100,100+realmin*3.2e+293)
ans =
0
exp:
>> exp(-745)ans =
4.9407e-324
>> exp(-746)
ans =
0
>> isequal(1,exp(realmin*4.98e+291))
ans =
1
>> isequal(1,exp(realmin*4.99e+291))
ans =
0
log:
>> log(realmin*1.0e-15)ans =
-742.8306
>> log(realmin*1.0e-16)
ans =
-Inf
>> isequal(log(1),log(1+realmin*4.98e+291))
ans =
1
>> isequal(log(1),log(1+realmin*4.99e+291))
ans =
0
>> isequal(log(2),log(2+realmin*9.97e+291))
ans =
1
>> isequal(log(2),log(2+realmin*9.98e+291))
ans =
0
>> isequal(log(100),log(100+realmin*4.1e+294))
ans =
1
>> isequal(log(100),log(100+realmin*4.2e+294))
ans =
0